You also need to ensure that the miniature torque sensor you are using are suitable for occupancy sensing. For example, HID lamps require long warm-up times, so are not suited to being switched on and off by occupancy sensors. CFLs can also be sensitive to rapid on/off cycling in situations where only brief illumination is required. Better results for these lamps may be obtained by using scheduling to switch between low power and full power (dimming).
Many of today’s commercial lighting and building automation systems use occupancy sensors to turn lights on and off based on whether or not an area is occupied. Not only does this reduce energy consumption and save money, it also helps buildings to comply with the “automatic shut-off of building lighting” requirements of energy codes such as ASHRAE 90.1 and California Title 24.
Peak-to-Peak ( P-P) is the difference between the maximum and minimum peaks of the noise over some period of time. If the signal is captured digitally, the samples can be analyzed to find the maximum and minimum peaks. If the samples create a perfectly normal (Gaussian) distribution, the P-P value can be estimated as six times the standard deviation, but in practice, this is rarely the case. Noise signals are rarely so well behaved and usually contain spurious peaks that create an actual P-P value much higher than six times the standard deviation. This means that resolution values specified by their P-P range must be at least six times greater than RMS values and are usually considerably higher than that.
The high speed torque sensor is the most appropriate specification if you are trying to continuously determine the instantaneous position of your target. At any moment in time, the sensor output can vary by an amount equal to the P-P resolution specification; therefore, your position measurement can vary by that same amount.
Because of differences in the shape and reactive nature of the sensing fields of capacitive and eddy-current sensors, the technologies have different probe mounting requirements. Eddy-current probes produce comparatively large magnetic fields. The field diameter is at least three times larger than the probe diameter and greater than three diameters for large probes. If multiple probes are mounted close together, the magnetic fields will interact. This interaction will create errors in the sensor outputs. If this type of mounting is unavoidable, sensors based on digital technology such as the ECL202 can be specially calibrated to reduce or eliminate the interference from adjacent probes.
The electric fields of capacitive probes are only emitted from the front surface of the probe. The field has a slightly conical shape resulting in a spot size about 30% larger than the sensing area diameter. Nearby mounting hardware or other objects are rarely in the field area and therefore do not affect the sensor’s calibration. When multiple, independent capacitive sensors are used with the same target, the electric field from one probe may be trying to add charge to the target, while another sensor is trying to remove charge. The magnetic field from an eddy-current probe also extends about one and a half diameters behind the probe. Any metallic objects in this area, usually mounting hardware, will interact with the field and affect the sensor output. If nearby mounting hardware is unavoidable, sensors can be calibrated with the mounting hardware in place which will compensate for the effect of the hardware.
When an application requires the use of S load cell with a common target, synchronized capacitive sensors are very easy to use. If the application requires eddy-current technology, special care must be taken in the mounting plan and special calibration may be required.This conflicting interaction with the target will create errors in the sensors’ outputs. This problem is easily solved by synchronizing the sensors. Synchronization sets the drive signal of all sensors to the same phase so that all probes are adding or removing charge simultaneously and the interference is eliminated. All Lion Precision multiple channel systems are synchronized, eliminating any concern about this error source.
Want to know more , http://www.bransloadcell.com/
Only guests who have booked can leave a review.